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ABSTRACT

The following conjecture of V. I. Arnold is proved: every measure pre~
serving diffeomorphism of the torus Tz, which is homologeous to the identity,
and which leaves the center of mass invariant, possesses at least 3 fixed
points. The proof of this global fixed point theorem does not make use of the
generating function technique. The theorem is a consequence of the statement
that a Hamiltonian vectorfield on a torus T2n' which depends periodically
on time, possesses at least (2n+l) forced oscillations. These periedic
solutions are found using the classical variational principle by means of two
qualitative statements for general flows. A second conjecture of V. I. Arnold

proved concerns a Birkhoff-Lewis type fixed point theorem for symplectic maps.

AMS (MOS) Subject Classifications: 58F22, 58C30, 70H15, 70H30, 59H20
Key Words: Fixed points of symplectic maps, Arnold conjecture, periodic
solutions of Hamiltonian systems, qualitative behaviour of flows.

Work Unit Number 1 - Applied Analysis

Sponsored by the United States Army under Contract Number DAAG29-80-C-0041.




SIGNIFICANCE AND EXPLANATION !
[ i

L

\ ,
~—— Periodic solutions of Hamiltonian systems are also critical points of i

a function on the loop space of the underlying phase space. If this functional
is bounded below, Morse's theory of critical points applies and he made such
an application to the problem of closed geodesics.
In the present problem (and in many more which arise in physics) the A l;é'ﬁb

functional is not bounded below and in fact tends to +& and to & on

(different) infinite dimensional sets. Understanding such ‘infinitely
indefinite' functionals is basic for mathematical physics.

The fundamental work of P. Rabinowitz set the tone for overcoming this
difficulty. It's wmodification here solves (the simplest version) of one of the

key problems of symplectic geometry.

N

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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The Birkhoff-Lewis fixed ooint theorem
and a conjecture of V.I. Arrnold

C.C. Conley and E. Zehnder !

1. Introduction, Results

The aim of this note is to prove two fixed point theorems for
symplectic maps which are generated by timedependent globally Hamil-
tonian vectorfields, which however are not assumed to be close to the
identity map. In the case that ¢ is a symplectic diffeomorphism on

the torus TZn = R?n/ this requires that ¢ = @1 , where ¢t is

ZZn
the flow satisfying

£ 0 = sune ) L P =i,
the function h ccz(Rx R?n) being periodic in all the variables of
period 1. The skew-symmetric matrix Je e(azn) is the standard
symplectic structure on R?n . Clearly, a periodic solution on Tzn

having period 1 of the Hamiltonian equation

(1) % =J9h(t,x , xR,
gives rise to a fixed point of ¢ , and the problem is to find l-pericdic
solutions of the Hamiltonian system, which is periodic in time of

period 1. The first result is as follows.

Theorem 1. The Hamiltonian vectorfield (1} on pln , with the function

h(t,x) ¢ Cz(Rx Rzn) being periodic of period 1 possesses at least

2n +1 periodic solutions of period 1.

The periodic solutions found by the theorem are contractible
loops on T2n ., i.e. are given as perioéic functions orn “2n . One
expects more periodic solutions, if all the periodic solutions are

known to be nondegenerate. Here we call a l-periodic solution aon-

Sponsored by the United States Army undes Contract No. DAAG29-80-C-0041.




degenerate, if it has no Ploquet-multiplier equal to 1 . Recall that

A ¢C is a Ploquet-multiplier of a periodic solution x(t) = x(t+l),

if A is an eigenvalue of dol(x(o)) , where ot is the flow of the
corresponding timedependent vectorfield. Indeed, the following

statement holds true:

Theorem 2. Assume that all the periodic solutions having period 1 of
the system (1) are nondegenerate, then there are at least 22“ of

them.

From then existence statement for periodic solutions one deduces
immediately the following Corollary for the symplectic map ¢ . We
call a fixed point x = y(x) nondegenerate if 1 is not an eigenvalue
of av(x) .

Corollary 1. Every symplectic ci-diffeOmorghism ¢y on the torus

Tzn = a.zn/zzn , which is generated by a aglobally Hamiltonian vector-

field, possesses at least 2n+1 fixed points. If, moregver, all the
fixed points of ¢ are nondegenerate, then there are at least 22n

of them.
The symplectic diffeomorphism which meet the assumption of the
Corollary can be characterized as follows. If (M,w) 1is any compact,
symplectic and smooth manifold, we denote by Diff°(M,u) the topo-
logical group of symplectic cw-diffeomorphisms v , i.e. yY*o = o .
Let Dift:(ﬂ.m) be the identity component in Diff°(M,w) , which can

be shown to bLe the identity component by smooth arcs in Diff°(M.w) .
It has been proved by A. Banyaga [4], that the commutator-subgroup of

Diffz(H.W) consists precisely of those symplectic diffeomorphisms,
which are generated by globally Hamiltonian vectorfields on M , and

hence agrees with the subgroup of symplectic diffeomorphisms having

vanishing so-called Calabi-invariant.




As a special case we consider a measure preserving diffeomor-
§hism of Tz » which is homologeous to the identity map on T2 and

hence is, on the covering space Rz ,» of the form
‘ 2
{(2) ¢ 2 X—aX+Ef(x) , Xx ¢ R ,

with f Dbeing periodic. As observed by V.I. Arnold, see [ 2], this

map V¥ 1is generated by a globally Hamiltonian vectorfield on Tz ig
and only if the meanvalue of f over the torus vanishes, i.e. [f] = O .
This fact will be proved in the appendix. We therefore conclude from

theorem 1 the following result, which was conjectured by V.I. Arnold

19 {21 and ( 3].

Corollary 2. Every measure preserving ci-diffeomorchism of Tz which

is of the form (2) with [f] = O has at least 3 fixed voints.

The condition [£f] = O is clearly necessary in order to guarantee
a fixed point, as the translation map x+—+» x+c shows, which has no

fixed points on T2 , 1f cf z2 .

We point out that it is not assumed that the symplectic maps con-
sidered are cl-close to the identity map. Indeed under this additional
assumption the above fixed points can easily been found as critical
points of a so-called generating function, which is defined on the
torus. The idea of relating fixed points of symplectic maps to critical
points of a related function defined on the corresponding manifold
goes back to H. Poincaré [11]. It has been exploited by A. Banyagé {51.
J. Moser { 8] and A. Weinstein [12] in order to guarantee fixed points

for symplectic maps, which are however assumed to be cl-close to the

identity map.




The second result is related to the Birkhoff-Lewis fixed point

theorem, for which we refer to J. Moser [9]. The problem can be re-
duced to an exact symplectic diffeomorphism on ™x D » D ¢ &"

being a disc, which is assumed to be close to an integrable map.
Instead we would like to replace such an interior condition by a con-
dition at the boundary ™ x 2D only. To be precise we consider on the
symplectic manifold ™ x &7 the time-dependent globally Hamiltonian
vectorfield given by

hit,x, ) « cCC(RxT"x &% .
and periodic in t and x of period 1. We suppose that
(3) h{t,x,y) -‘% <y.by> + <a,y>

if |yl 2 >0 , where b ¢ (R is a time-independent, symmetric
and non-singular matrix, and where a ¢ R® are constants. Set
™x D = {{x,y) « ™ x Rn| |yl <R} . Under these assumptions, the

following statement holds true.

Theorem 3. The Hamiltonian vectorfield on Tnx ®" admits at least

n+l periodic solutions of period 1, which are contained in Tnx D .

Again the periodic solutions found are special: their projections
onto T" are contractible loops on ™ . The symplectic diffeomor-

phism generated by the above time-dependent Hamiltonian vectorfield

admits then at least n+1 fixed points in Tnx D .




2. Ydea of the proof

The proof of these theorems is based on a variational principle
for which the periodic orbits are critical points. This variational
problem differs from that customarily used in mechanics, which in the
example of the geodesic flow on a2 manifold M is the length integral
or the energy integral. In contrast, the variational principle used
here is defined in the loop space over a symplectic space, in the

above example, over T*M . In our problem of the torus T2 = g20 /220

we consider, on the covering space RZn , the action functional, de-
fined on periodic functions x(0) = x(1) :
1

£(x) = 1{5“ <%,Jx> - h(t,x(t)) )at ,
)

whose Euler-equations are indeed the Hamiltonian egquations (1).

This functional is neither bounded from above nor from below. That

it still can be used effectively for existence proofs was first shown
by P. Rabinowitz and subsequently used by many authors. Since h is
periodic, following the ideas of [ 1], it will be shown that the
required critical points of f are in one-to-one correspondence to
the critical points of a function g , which is defined on the finite
dimensional manifolad M = Tznx Rgx RF for some large N . The critical
points of g are then found as the rest points of the gradient flow
Y9 on M . From the fact, that h and its derivatives are uniformly
bounded it follows, that the set of bounded solutions of this g-adient

flow is compact and contained in the compact set B := Tznx Dx D ,

where D is a disc in RN . Moreover B := T2"><oox D is the exit

2nx Dx dD is the entrance set, so that B 1is an iso-

set and B =7
lating block in the sense of [ 6). The proof now follows from two

general statements for flows, which are not necessarily gradient




flows. First consider any continuous flow which admits the aktove

very special isolating block B , with exit set B~ and entrance set

B+ . Then the invariant S of the flow contained in B carries

cohomology which it obtains from the torus T2n . In fact theorem 4

states that
ts) = 0(m = £(r°™ =2n+1

where {(X) denotes the cup long of a compact space X . The second
statement concerns Morse-decompositions. If {Ml""'Mk) is an
ordered Morse-decomposition of a compact, isolated invariant set §

of a continuous flow, then

k

tis)< £ B(m) ,
j=1 )

by Theorem 5. If, in addition, the flow on S is gradientlike with

finitely many rest points then these rest points are a Morse-decompo-

sition of S . In this case t(M*) = 1 and we obtain the estimate
k o

l(S)$ £ 1 = & {rest points} .
=1
We conclude that the gradient flow g possesses at least 2n+1
rest points and theorem 1 follows. Theorem 3 is proved similarly.
Theorem 2 is a simple application of the Morse-theorie as developed

in [7 ] to the compact set S of all bounded solutions of tg on

M.

3. The variational principle and the reduction

We shall look for special periodic solutions of the Hamiltonian

2n

system (1) on T = n,zn/z2n , namely for those whose orbits are con-

tractible. In the.covering space R2n of the torus these solutions

n 40 = x(1) .

are described by periodic functions tr— x(t) € R
The required periodic solutic' s are the critical points of the

functional




(4) £(x) 1= f{%q‘c.av- h(t,x(t)) Jat ,
o

defined on the space of periodic curves in R2n » L.e. x(0) = x(1)

Indeed one verifies immediately that

(s) VE(x) = -J% - Yh(t,x) .

To be precise we introduce the Hilbert space H = L,((0,2)) :Rzn) .
Define in H the linear operator A : dom(A) ¢ H - H - by setting
dom(A) = {ue Bl([o.llgkzn) |a(0) = u(1)} and Au = -Jd if u e¢dom(A).
The continuous operator F : H - H is defined by 1b“(u) (t) :=9h(t,u(t)’

ue¢H . Its potential &(u) is given by ¢(u) 3= S h(t,u(t))dt , so

o
that F(u) = gé(u) .

Since J’za -1 we can write the equation (1) in the form

-Jx = Vh(t,x) and one sees that every solution u edom(a) of the

equation

(6) Au = F(u)

defines (by periodic continuation) a classical l-periodic solution

of (1) . Conversely, every l-periodic solution on ,r2n of (1), which
is contractible on Tzn defones (by restriction) a solution u of
the equation (6). With these notations the functional £ defined by

(4) becomes

(1) £(w) =3<Au,u> - o(w) ,

for ue«dom(A) . We look for critical points of £ .
Since h is periodic, there is a constant a > 0 such that
(8) Ih*(t,x)| € a

for all (t,x) € R x RZn , where ' stands for the derivative in the

x-variable, We shall use this estimate in order to reduce the problem




of finding critical points of the functional £ on dom(A) to the
problem of finding critical points of a related functional, which is

defined on a finite dimensional subspace of the Hilbert space H .

First observe that the operator A is selfadjoint, A'- A . It
has closed range and a compact resolvent. The spectrum of A , o(A) ,
is a pure point spectrum and o(A) = 2xZ . Every eigenvalue A ¢ c(A)
has multiplicity 2n and the eigenspace E(\) := ker(A-A) is spanned
by the orthogonal basis given by the loops:

tAJ

t—ve e = (cos ht)ek + {(sin At)Je

k ’
k =1,2,...,2n , where (eklls k€ 2n} is the standard basis in R2n .

In particular ker(A) = R2n

;s that is the kernel of A consist pre-
cisely of the constant loops in R2n . Denoting by {Bxl}‘ € R} the
spectral resolution of A we define the orthogonal projection

P ¢ 2(H) by 8
P= {dE, , with 832> 2a,
8

where 8 f 2xZ . Let P! = 1-P and set Z =P(H) and Y = P (m) .
Then H = Z®Y and dim Z <o . With these notations the equation

Au - F(u) =0 , for u e¢dom(A) 1is equivalent to the pair of equations

APuU - PF(u) = O
(9)
aptu - PrF(u) =0 .

Now writing u = Pu + Plu = 2+4y ¢ Z@Y we shall solve, for fixed z«¢2Z,
the second equation of (9) which becomes Ay - P'Ll-'(z-by) = 0 . With

A, = AlY this equation is egquivalent to

(10) y = Agiplr(z+y) .

Observe that IA;1I$ 5-1 and IP‘LI = 1 . Also, fram (8) we conclude

that|{F(u) - P(v)| < aju-v| for all u,v ¢ H . Consequently, in view




of f#22a , the right hand side of (10) is a contraction operator

in H having contraction constant 1/2. We conclude ,for fixed z¢ 2
that the equation (10j) has a unique solution y = v(z) ¢ Y . Since
(A;ly) (¢) = f Jy(s)ds , we have A;]'(Y) ¢ H' and therefore

v(z) ¢ dom(_A)o. Moreover, the map zw~ev{(z) from 2 into Y |is

Lipschitz-continuous. In fact we have [v(zl) - v(zz)[ <

%Uzl-zzl + lviz)) - v(z))|)}. Setting
u(z) = z + v(z)

we now have to solve the first equation of (9), namely Az~ PF(u(z)) =0,
which in view of (10) is equivalent to the equation Au(z) - F(u(z)) =0.

One verifies readily that
(11) yg(z) = Az - PF(u(z)) with g(z) := £(u(z)) .

It remains to find critical points of the function g , which is de-
fined on the finite dimensional space 2z .

The following observation is crucial. Since h is periodic
we conclude by uniqueness that v(z+j) = v(2) for every 3 ¢ z2n and

for every z¢ Z . Therefore u(z+j) = u(z) +j and consequ=ntly

(12) gal(z+)) =va(z) , J e z2n '

for all ze€¢ZzZ . If 2z¢2 , then z =x+¢t , with x = (z] being the
mean value of z . Hence x ¢Ker(A) and te¢Ker(a)tn z . Writing

z = (x,t) we conclude from (12) that wa(z) =Va(x,t) 1is a vector-

2n N RZM 2n

field on (x,t) €T , where T = R2n/22n . Summarizing we have

proved
Lemma 1. The rest points of the Lipschitz-continuous vectorfield

v9(z) =9g(x,t) on T2n x RZM are in one-to-one corresvondence with

those neriodic solutions having period ! of the Hamiltonian eguation ()




on o0 which are contractible.

In order to find the rest points of Yg we study the gradient

flow dis z =9g(z) on (x,t) ¢ Tznx RZM , which, explicitely, is

given by

Ed; x = - Q F(u(z))
(13) a

3s & = At - QF(u(z)) ,

where Qo is the orthogonal projection onto the constants, i.e.
onto the kernel of the operator A , and where Q is the orthogonal
projection onto the complement of ker(A) in 2 . Therefore there

is a splitting ¢ = (§,.8) « M x RM with

A, O\/[t
At = Y - +
o a\s

2
DL k> 2 20 (g ]

(14)

<At >s-2x 5| .

Since h is uniformly bounded, there is a constant K>O such that
|F(u(z)) ] $SK for every z ¢Z , and we conclude from (13) and (14),

that there is an € >0 with

4 2 .

Sz if gl 2K
(15)

d 2

Ll (25 if |1 2K .

In fact, d_i% |g+|2 =<g AL, - Q+F(u(z))> =<t AL > <§+.Q+F(u(z))>

2 . d 1 2 2
€ = lt,l°K s similarly 35 5 le_|"€-2n|¢_|["+|g_|-K , and

2 2xg,
(15) follows. Clearly all the rest points of 9¢g are contained in
the compact set B = T2nx D,x D, , where D, and l's2 are the discs

. M M
of radius K , D, = (¢, ¢ R| [¢,] SK} and D,= {t_er| [¢_|< K} .
Moreover B := T°"x oD, XD, is the exit set of B and pt= TznxblxéD

is the entrance set, so that B 1ig an isolating block in the sense

of [6].

2




an

11

Summarizing we have proved:

Lemma 2. The compact set B = Tan D1><D2 is an isolatina block for

the tlow of yg with exit set B = 20 ®, xD

and with entrance

2

set B%= 72% D,x 9D, .

We shall prove that every continuous flow which admits the above
very special isolating block (B.B-,B+) contains at least 2n+1

rest points in B , provided the invariant set in B 1is gradient like.

4. Two statements for flows

. m N Ny .
We consider, more generally, on M =T xR “x R with co-

ordinates (x.yl.yz) a continuous flow, which is defined in an open

neighborhood of the compact set B = ™x D1><D , where D and D,

2 1

. Ny N2
are discs, D, = (v eRr l|Y1| < Kl} and D,= {y,¢ R [[yz! <€ K} .
If yYyeM and if wt(v) is the orbit of the flow threough y = oo(y)
we shall write ¢t(y) = y-t . For an interval J ¢ R we set

v-J = {y-t}Jt ¢J} . The invariant set contained in B is defined to

be
S = {yeB|y*Rc¢B} .

-11~




Recall the

Definition: Let H*(X) be the Alexander cohomology of a compact

topological space X with real coefficients. Then the cup long of

X 1is defined as

1(X) =1 + sup{keN|3 LIERRRRT N cH*(X)\ 1 with
a ua, use.u o.kf o} .

Ny

N .
Theorem 4. Assume a continuous flow on TV x R "x R 2 admits the iso-

lating block B = me D1 xDz with exit set B~ := me oD1xD2 and

with entrance set B+ 1= ™x D1><ODZ . Let S be the invariant set

in B , then:

0s) 2 £ = L™ =m+1 .

We need a Lemma and define by means of the flow the compact sets

+ +
A := {yeB|y-R ¢ B}

(16)

A" := {ye«B|y-R ¢B} .
It then follows, that
S = A+n A" .

Lemma 3. Assume B is an isolating block with exit set B~ and

+ + . -
entrance set B . Then B is a stronqg deformation retract of B\ A

and B~ is a strong deformation retract of B\ A .

Proof: The proof follows immediately from the definition of an iso-

lating block. In fact, in order to prove that B~ is a strong defor-
mation retract of B\ A+ define the continuous function 7+: B\ A+* R
by setting f+(x) = gup{t|x-[0,t] ¢B} . Then f+(x) = 0 if and only if
Xx&¢B~ . The deformation retraction F : {B\ A+)x {(0,1] -~ B\,A+ is

simply given by F(x,s) = x*{sr+(x)} . The other part of the lemma is

proved similarly. @




Proof of theorem 3. Note that H*(B) = §* (™) , since B = T"x D, xD, .
Let il.....im be the classes in H* (B) which correspond to the
m v v v
de Rham classes dxi on T . Then ®:= XU Xy U.enu X, A0 in
v . s
H*(B) since dx1 Aeeah dxm is a volume form on T" . We shall show

v
that ¢ maps nontrivially to H*(S) under the inclusion induced map

- -
i*: H*(B) -« H*(S) . The statement Q(s) > m+l then follows.

To see this consider the following two diagrams, in which H*
and H, denote the singular cohomology and homology respectively
with real coefficients. Observe that a8 = B'y B~ , and
(B\A) v (B A+) =B\ (A n A+) = B\S . Observe also, that the compact

set S is contained in the interior of B .

N

H*(B,B) ®© H*(B,B”)— H*(B,0B) H,(B,0B) - i*(B)
- - 4+ U B o
B*(B,B\AT)® H* (8,B\A") *= u*(B,B\5) H, (B,B\S) —» H*(s)

The vertical maps are inciusion induced. The maps ii and 1‘2'
are isomorphisms, by Lemma 3. The isomorphism D (in the second diagram)
is the Alexander duality map: D: Hj (B,3B) - ﬁd-j(B), with 4 = m+N, + N,.

We shall find cohomology in H*(S) by means of the following argument.
Let a ¢ H*(8,B%) and B ¢ H*(B,BT) such that avu B# O in H*(B,2B).
Then a = i}(a*) for some a* ¢ H*(B,B\A") and § = i3(8*) for some B*
in H*(8,B\A"), since i} and 13 are isomorphisms. Hence au B = 3*(a%B*)
is in the range of j*. Now, going to the dual spaces (in the sense of vector

spaces), there is a u ¢ Hj (B,2B) dual to au £ such that j, () =: u* ¥ 0

in Hj (B,B\S). Consequently, the Alexander dual Blu) ﬁd-j(B) is mapped onto

1*Bu) = Du*) # 0 in

1W-3s).




™™ ]

, then d-j = m and D(u) ¢« H°(B) = H

1f, in particular, j = N1+ Nz

which is generated by ‘5 = 3':1 Usesol ;‘m . Consequently
1#(8) = i'(;t1 Ueeou im) A0 in HYS) and so 1(S) 20(T™ = m+1 as

claimed in the theorem.

In order to carry out this arqument concretely we first recall

-~

that H*(B,B ) :a'(-r“')on*(oz.onz)en'(nl) and H*(B,B") =

B*(T") @ H* (D,) @ H* (D,,8,) , also H*(B,0B) & H* (™ ®H* (D, ,3D,)
® H* (D, ,0D,) = H* (™ @ H* (D, x D,.D,x3D,udD, xDy) . We choose now a

. - N
to be the image ¢ in H*(B.B*) of the generator ¢ of H 1(D1'°D1)
N N - -
- H 1(s 1.-) , and we choose g to be the image n in H*(B,B) of
N2 ~ N2 N2

the generator n of H (Dz.anz) =H “(S “,a) . Then ay g is equal
to the image ¢ in H*(B,8B) of the generator ¢ of

N, +N, Ny 4Ny
H ((Dl,ODl) x(Dz.aDZ)) ,and 80 aup #0 in H (B,8B) , so

the theorem follows, by the above argument. @

Definition: Let S be a compact invariant set of a continuous flow. A

Morse decomposition of S is a finite collection (Mp}pcp of disjoint,
compact and invariant subsets of § , which can be ordered, say

(nl.Mz,....Mk) , k = |[P| , so that the following property holds true.

1f Y(S\UH-

peP P

then there is a pair of indices i< j such that the limit sets of

Y satisfy:
w(y) ¢ M, and w*(y) ¢ Mj .

Theorem 5. Let S Dbe any compact invariant set.of a continuous flow ,
with Morse-decomposition {Mp)pcp . Then

fis)s = B(m) .
peP P

In particular, if |P| < £(S) , then same M, has non-trivial

Alexander cohomology (so contains a continﬁum of points).

-14-
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Postponing the proof of this theorem we first derive the

corollary:

Gorollary: Let S be a compact invariant set of a continuous flow.

Assume, in addition, that S is gradient like (i.e. there exists a

gontinucus real valued function on S which is strictlv decreasing

on non-constant orbits). Then S contains at least [(S) rest voints.

Lo Sl

In fact, assume there are only finitely many rest points in S .
Then tﬁey form a Morse~decomposition of S , since S 1is assumed to
be gradient like. As none of the sets of this decomposition has non-
trivial cohomology, hence E(MP) = 1 , there must be at least [ (S)
sets in the decomposition, hence f(s) rest points, proving the

corollary. It remains to prove theorem 5.

Proof of theorem 5: First observe that any decomposition of S can be
obtained by first decomposing into two sets, then decomposing one of
these and continuing until the decomposition is reached. Therefore one
needs only prove the theorem for decompositions into two sets. Thus let

(MI'H2) be an ordered Morse-decomposition of S .

From the definition we conclude that there is a compact neighborhood

S of M, in S and a compact neighborhood S, of M, in S with

2 2
Slu S2 = S and such that

M, = NSt and M, = n S
P b 2 e

2 (=%) .

Consequently, by the continuity property of the Alexander cohomology,
ﬁ'(sl) = ﬁ'(Mx) and ﬁ*(sz) = ﬁ'(Mz) ., and it is therefore sufficient

to prove that f(s) + 0(s,)) > £(S) for S uS, =S . This will follow

2
from the following general observation:

~15=
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emma 4. Let S, uS,¢S be three compact sets. Denote by
Lemma 3 1Y 5;

11x S, =S, izx s2 - S and 1 S,uS, =S the inclusion maps. Let

a,p ¢ ‘!‘I'(S) . Then:

ifja =0 and i3 =0~ i*(avp) =0.
Proof: Consider the following diagram
v (s.5,) @ f*(s.5)) —2. H*(s.5,u8,)

lj; 13 o

v v v v
H* (8) @ H*(S) ———— H*(S)
[ iy i3 e

B*(s.) B*(s) —Yp f*(s, . 5.)
@ 2 v Sz -

The vertical sequences are exact. If a ¢ ﬁ*(S) satisfies i;(a) =0
then there is an & ¢ H*(S.5) with 37(3) = a . Similarly, if
15(9) = 0 , then j;(a) = B for some E ¢ ﬁ*(s,sz) . Since

j'(;u B) - j;(a)u j;(a) = aup We conclude, by exactness, i*(a. 8)

- l*.j*(;u B) = 0 , as advertized.®

Going back to the proof of theorem 5 we let LTRLPERERNL be
in i*(s) such that Qg uBy U.eey al)‘ QO . Let the a's bve ordered
so that ay veeou @y is the longest product not in the kernel of i; .
Therefore f(S,)2 r+1 and if(a, uv...u a,va ) =0 . Since
S~ slusz it follows from Lemma 4, that i5(°r+2 Ueesu a?) %A O and
therefore 1(S,) > f-(r+1) +1 =f-r . Hence [(5)) + P(S,)>0+1 . We
have shown that if S admits a nontrivial produ;:t with £ factors,
i.e. 1t 0(S)2 U+, then f(s)) + ?(sz) 2 {+1 , so the statement of

the theorem follows. 8

-16-
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S. Proof of Theorem 1

By Lemma 1 the 1-periodic solutions, which are contractible on

,an » are in one-to-one correspondence with the rest points of the

gradient flow of wg on 'rzn x RZM

. If S8 is the invariant set of

this flow in the block B of Lemma 2 we conclude,by the Corollary
of theorem 5 ,together with theorem 4, that S contains at least

2n+1 rest points. @

‘ 6. Proof of theorem 3

On the manifold M = T"x ®" the Hamiltonian vectorfield is, on
the covering space R"x /", given by the function h(t,x,y) . The

function h is periodic of period 1 in + and in the x-variables.

We look again for special periodic solutions which are,on R x "

given by (x(t),y(t)) , where both x(t) and y(t) are periodic of
period 1. Hence, on " , the loop t—s x(t) is contractible. These
periodic solutions are the critical points of £ as defined in (4),

with x replaced this time by (x,y) . We write

h(t,x,y) --;- <y.by> + {(h(t,x,y) - % <y,by>}

= hi(Y) + ho(t1Xpy) .

It follows from the assumption of theorem 2 that Nhol €K . We
proceed now as in the proof of theorem 1. The equation (g) looks as
follows:

Au = Fy(u) + F (u) = F(u) ,
where F, (u) (t) =Vh, (u(t)) and F_(u) (t) -Vho(t,u(t)) . Moreover
!Po(u) ] €K for all ue¢H . The operator F,(u) is a bounded linear

operator of the Hilbertspace H :
o O

0 b) u(e) .

P ,(u) :=Bu , Bu(t) -(

Since |h"(t,x,y)] S a for some a > O , the sought periodic solu-
tiot}l are againfound as the critical points of a function g defined on

the finite dimensional space 2Z . We find

-17-
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Vg(2) = Az - Bz - PP (ulz)) .

Here we have used, that B commutes with the projection P of the

Hilbert space H onto Z . The vectorfield ¢g(z) is thistime a

vectorfield on T" x R® x RZM . More specifically we can use as co-

ordinates in Z the Fourier coefficients up to order N = [g] , with
# as in the proof of theorem 1. Xf 2z(t) = (x(t),y(t)) we thus have
N
x(t) = x, + nzl(an%(t) + anwn(t))
N

Y =¥+ T (anen(t) + by (e))

where on(t.) = gin(2mt) and wn(t) = cos(2xnt) . The meanvalue
x, = [x(t)] is the variable on the torus ™ . In these coordinates,

the gradient equation L z = Jg(z) becomes, if we omit the nonlinear

ds
term PE‘b(\:(z)),which is uniformly bounded:
-
ds %o °

d
3s Yo" Y,

“n “n
a 9n 0 lZmJ B
ds a -anar"g _g a,
bn bn H

1€n<N . Since, by assumption, det b & O , we see from this repre-
sentation, that the vectorfield transversal to the torus is hyper-
bolic, if we omit the nonlinear terms. Since the omitted terms are
uniformly bounded, we can construct therefore, as in Lemma 2, a special
isolating block for the gradient flow v g{(z) which is of the form:

n

T times hyperbolic. Application of the Corollary to theorem S

together with theorem 4 yields (n+1) critical points of g , which

-18-




give rise to (n+l) periodic solutions. We claim that the periodic
solutions found are contained in the region ™x b c¢T"x R" , where D
is as in the assumption of theorem 3. In fact, on ™ x (an\ D) the
Hamiltonian system is integrable;

x -%h(t,x,y) = by + a

0 om - =
Y pon h{t,x,y) 0.

Hence the tori T x {y} are invariant under the flow, and the

restriction of the flow onto a torus T 'x {y} is in fact linear:

Qti (x,¥) —> (x+t (by+a) ,y) . In particular, the periodic solutions are,

on R'x (Rn\D) » not described by periodic functions. Therefore the
periodic solutions found above must lie in T™x D . The proof of

theorem 3 is finished. @&

7. Proof of theorem 2

We shall make use of the Morse-theory for flows as represented in
{7 ). In order to briefly outline the result we need, we consider a
continuous flow on a locally compact and metric space X . A compact
and invariant subset S ¢X is called isolated, if it admits a compact
neighborhood N such that § is the maximal invariant subset which
is contained in N . With an isolated invariant set S a pair (Nl'Nz)
of compact spaces can be associated, where NZ; N1 is roughly the

"exit set" of N and where S cint(Nl\ Nz) is the invariant set

1
contained in N1 « The homotopy type of the pointed space (Nl/Nz,.)
then does not depend on the particular choice of the "index-pair"
(Nl'NZ) for S , and is called the index of S . It is denoted by

h(S) = [(Ni/Nz,')] . The algebraic invariants of h(S) are defined

to be p(t,h(S)):= ¢ tj dim ﬁj(Nl.Nz) + where (Nl‘Nz) is any index-
2o
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pair for S . Let now {Ml""'Mk} be an ordered Morse-decomposition

of S . Then the relation between the algebraic invariants of h(M)
and those of h(S) 1is described by the following Morse-inequalities
(see [ 7], theorem 3.3) :

k
(17) jflp(t.h(uj)) = p(t,h(S)) + (1+£)Q(t) .
where Q 1is a formal power series with non-negative integer coeffi-

cients.

We shall apply this equation to the flow of g on Tznx RNx RN ,

with S being the set of bounded solutions. Then S is compact,

2N

since by (13), |yg(z)| 2 ¢ for all z = (x,t) « Tznx R with Jg]2 K.

In particular S is contained in the interior of the compact set

B = Tan D, x 02 , Lf we choose the radii of the discs sufficiently

big. Moreover, by Lemma 2, the compact pair (B,B”) , with the exit

2n

set B = Tx aDlx D, , is an index pair for S 1in the sense of

2
(I 7], definition 3.4) . Therefore h(S) = [(B/B ,+)] and the algebraic
invariants of h(S) are easily computed. Namely

B*(h(s)) ¥ H(8/87,+) T Hv(8,87) T f*(r™"x D 7" x ) which, by the
Kinneth~formula, is isomorphic to F{*(Tzn) @i‘l* (Dl’obl) . As
ﬁ*(Dl.ODl) = ﬁ*(s“ ), ™ being a sphere of dimension N , we con-

j=-N

clude ﬁj(h(s)) = é (Tzn) . Consequently, the algebraic invariants

of h(S) are given by

2n 2 .
(18) plt,h(g)) = 1 (°M NI
j=o J

Recall Lemma 1 and assume that all the periodic solutions having
period 1 are nondegenerate. In this case it can be shown ([ 71,
Lemma 2.6) that the function g is a Morse-function, hence has only

nondegenerate critical points. Their number is finite, since the

-20_




critical points are contained in the compact set B . Therefore the
critical points {zj} - Hj can be labeled so that they form an
ordered Morse-decomposition of S . It is easily seen ([ 7], sect. 3.6)
that h((zj}) = [(de..)] , where dj is the Morse-index of the
critical point zj . Consequently p(t.h((zj}) = tdj . Hence, by (18),

the Morse-inequalities look as follows:

k 4a. 2n .
(19) ttd = g (-‘;")tJ+N + (1+t)Q(e) .
I=1 i=o

Since the polynomial Q has nonnegative integer coefficients we

2n
conclude in particular that indeed k> ¥ (?n) = 22n , as we wanted

j=o
to prove. 8

8. Appendix

We prove the following statement which we found in V.I. Arnold's
book (2 ], Appendix 9, without proof however. The idea of the proof

was suggested to us by J. Mather.

Theorem 6. If v is a symplectic c®-diffeomorphism of T2= R2/22

e e following statements are equivalent.

(1) ¢ is, on R? ,» 9f the form xrex + £f{x) with f being

periodic and (£f] =0 .

(ii) ¢ is generated by a globally Hamiltonian vectorfield on T2 .

(i11) ¢ Dbelongs to the commutator subgroup of Diffz(Tz.w) , the

identity component of the group Diff”(Tz.w) of svmplectic

giffeomorphisms of Tz .

The statement (ii) * (iii) is a special case of a result due to
A. Banyaga { 4 ). In order to prove (i) e (ii) we begin with a Lamma,
which is due to J. Moser.

-21-




Let M be a compact symplectic manifold. Fixing a symplectic
form w, on M we consider the set 0 = {symplectic forms o on

Mliw - S w, for all Z-cycles ¢ on M} .
e c

Lemma 5. Let s"'ws ¢« 0, 8¢ (0,1] be a closed curve which is contrac-

tible to o in Q , L.e. there exist o «eQ , s,t ¢ {O0,1] with

fo — e ———— 't

N for se¢f(O0,1] , and Woe = Wi T W, for te¢ (O,1].

Then there exists a closed curve S—> g, ¢ Diff (M) satisfving

» n i .
qug = w, Aand % "9 id

Remark. For dim M = 2 every closed curve oy meets the assumption of

the Lemma. In fact, since 0 is convex we can set

Vep ™ tw’ + (1-t)w°c R . For dim M>2 the assumption is met, if the

component of f containing w, is simply connected. When this is the

case is not known to us.

Proof. We follow {10]. By the Hodge decomposition theorem with respect

%
- ion &
to a given metric on M we have the representation 3t Yse dast+ hst.
The 2~form hst is harmonic. We shall require that ast’ bgst so that
f the choice of L is unique. Since by assumption the periods of woe
: a
| are independent of t , those of 3t Wey 2are zero and so hst =0 .
Thus
‘ a
| (20) 3t Yst T 9%
where, by the above normalization, L is unique. As Wy T W™ Wy
we therefore have % =a, = O . Let Vst be the unique vectorfield
satisfying
(21) Vge (Vger ") = ~g¢
and let Pgr be the flow
|
(22) - 2V .o , o = 1id .
at "sc st st 80
22~




Since dmst = 0 one finds with (20)

4

and (21)

; .l L ] * oom— .
I dtwstwst) = %el3e Yart d(wst(vst' 1}

d
st'dt st

st st -1 (=]

P T Py 7 id . Therefore Pq = 9gq

morphisms. @

Consider now M = Tzn and let

form on T2n . Define the subgroups

follows

=t [(=— @ = dast} =0 .

Hence o* o = = o . Also, from V° - v = 0 , we conclude

t it
is the desired loop of diffeo-

wy be the standard symplectic

A, A, A, of DifeT(M) as

A = {y eDiffm(M)I ¢ homotopic to id }

*
A = {venly w, = v}

. (on]
A, = {veDiff (M) lw*wo = w, and,

with

Then clearly A» A > Az .

on Rzn , $(x) = x + p(x)

{pl =0} .

Lemma 6. If M = 'r2 , then Ay and also Az are connected by smcoth

arcs.

2

Proof. It is a nontrivial fact, that, since dim T = 2 , the group

of diffeomorphisms of 'r2 which are homotopic to the identity is

equal to the one component of Diffw('rz) , which is connected by

smooth arcs, see C.J. Earle and J. Eells [13]. If A1 we take a

s o

v, = id , by =¥ .

-2 3~

smooth arc y, e¢A with x = id and y, =y and set

= L%
WeT XgWy € 0

so that w_=w_  for s = 0,1 . By Lemma 5 there is 9g With

Q;(Ds = w, and R id . Therefore Vg ™ g %g € A, and




2
5 then byt x._.x-+as+ ps(x) »a, € R and

If, moreover Y ¢A

a =a = o, [psl = 0 . We set Ty P XeeX -3, then Vg™ Tgovg € A,

~

and wo-id. LTS PR

In view of this lemma, the statement (i) « (ii) is an immediate

congequence of the following simple

Lemma 7. A _smooth arc wt € A1 with v, = id is the flow of a

globally Hamiltonian vectorfield on T2n if and only if ut € A2 .

Proof. Let y

<A, then Y_: X—ux + pt(x) with [pt] =0 , Since

t t

W;wo = W, we conclude

4 -1
(dt \pt).wt =JYh ,

vh(t,x) being periodic in x, so that h(t,x)==<x,c(t)>-¥h1(t.x) with h1

periodic in x. Butlét] = 0 , hence [§t. wzll = [§t] = 0 and conse-

quently c(t) = 0, so that indeedh:h1 is periodic in x . Conversely,if

wt is the flow of the globally Hamiltonian vectorfield Jvh on T2n .

*
then wtwo = and wt ¢ A, . H

o 2
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